
1Scientific RepoRtS |         (2019) 9:18848  | https://doi.org/10.1038/s41598-019-55444-9

www.nature.com/scientificreports

Assessment of Local climate Zone 
Classification Maps of Cities in 
China and Feasible Refinements
chao Ren  1,2, Meng cai3, Xinwei Li1*, Lei Zhang1, Ran Wang3, Yong Xu4 & Edward ng3

Local climate zone (LCZ) maps that describe the urban surface structure and cover with consistency 
and comparability across cities are gaining applications in studies of urban heat waves, sustainable 
urbanization and urban energy balance. Following the standard World Urban Database and Access 
Portal Tools (WUDAPT) method, we generated LCZ maps for over 20 individual cities and 3 major 
economic regions in China. Based on the confusion matrices constructed by manual comparison 
between the predicted classes and ground truths, we highlight the following: (1) notable variation 
in overall accuracies (i.e., 60%–89%) among cities were observed, which was mainly due to class 
incompleteness and distinct proportions of natural landscapes; (2) building classes in selected cities 
were poorly classified in general, with a mean accuracy of 48%; (3) the sparsely built class (i.e., LCZ 9), 
which is rare in the selected Chinese cities, had the lowest classification accuracy (32% on average), and 
the class of low plants had the widest accuracy range. The findings indicate that the standard WUDAPT 
method alone is insufficient for generating LCZ products that demonstrate practical value, especially 
for built-up areas in China, and the misclassification is largely caused by the lack of building height 
data. This result is confirmed by a refinement test, in which the urban DEM retrieved from Sentinel-1 
data with radar interferometry technique was used. The study shows a detailed and comprehensive 
assessment of applying the WUDAPT method in China and a feasible refinement strategy to improve 
the classification accuracy, especially for the built-up types of LCZ. The study could serve as a 
useful reference for generating quality-ensured LCZ maps. This study also examines and explores 
the relationship between socio-economic status and LCZ products, which is essential for further 
implementations.

Urbanization, as a process that gradually changes the physical landscape, is often accompanied by environmen-
tal problems and health challenges, such as urban heat islands, air quality degradation, heat stroke, overweight, 
hypertension, infection diseases and increasing deaths caused by injuries1–5. These challenges are being addressed 
with advances in urban climatology, where numerical and physical models in combination with urban canopy 
parameters (UCPs) have been used to study the interaction between city structure and local climate6–9. To acquire 
UCPs, the existing land use and land cover (LULC) data are usually compulsory. However, although several global 
LULC datasets are available10–12, they are inadequate for calculating UCPs because the description of urban mor-
phology is deficient. To fill the data gap globally, the World Urban Database and Access Portal Tools (WUDAPT) 
project was initiated13,14. As a level 0 product, the local climate zone (LCZ) data have been developed to date. The 
LCZ scheme categorizes the urban surface into 10 built types and 7 natural types15,16, from which UCPs can be 
determined and thereby improved climate model results can be achieved. Due to its detailed description of urban 
areas, the LCZ scheme is gaining popularity in studies of local air/surface temperature features16–21, urban heat 
islands22–24, urban energy budgets25,26, outdoor thermal comfort27,28, machine learning20,29 and urban ventilation 
simulations30. When historical LCZ datasets are available, there are useful for examining the impacts of local 
cover change on the spatial pattern of land surface temperature31, evolution of the climatological effects of urban-
ization32, and urban growth monitoring33.

Because the WUDAPT community provides a standard processing workflow for the generation of LCZ data 
from freely available satellite images (e.g., Landsat and Senitinel-2) and training samples that have been identified 
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according to Google Earth images with open source SAGA software, there is currently abundant LCZ data for 
more than 120 cities in different continents; these data are being produced and uploaded to the WUDAPT portal 
after quality assessments14,20. In this work, following the standard WUDAPT processing method, we generated 
LCZ maps for over 20 individual cities and 3 major economic regions in China from Landsat images acquired 
from 2014 to 2015. The cities vary in size and have distinct geographic locations; additionally, the cities have dif-
ferent levels of economic development. The quality assessment and cross-comparison among these LCZ maps are 
then rigorously conducted to reveal the factors that limit the accuracy of the WUDAPT method in Chinese cities. 
To explore the strategies that can improve the accuracy of current LCZ products, we evaluated the role of the 
urban digital elevation model (DEM) generated from Sentinel-1 data by the synthetic aperture radar interferome-
try (InSAR) technique. Although SAR data have been used for LCZ classification, only SAR intensity information 
has been adopted34–36, and the role of an InSAR-derived urban DEM for the refinement of LCZ products has not 
yet been investigated.

The contributions of the work are multi-fold. First, LCZ classification maps with a mean overall accuracy of 
76% for more than 50 Chinese cities were generated, which enriched the database of land cover and land use in 
China and can benefit the study of urban climate24,37–39. Second, by mining the confusion matrices of such a large 
volume of LCZ data, the factors that limit the performance of the default WUDAPT workflow in cities of China 
have been revealed. Finally, this study sheds light on the directions of further optimization of the WUDAPT 
method by selecting suitable training samples, considering seasonal discrepancies between training samples and 
Landsat data, and involving external data sources. Among them, the urban DEM retrieved from freely available 
Sentinel-1 data shows great potential.

Results
Overall accuracies. Following the standard WUDAPT processing workflow40,41, the LCZ maps of 20 indi-
vidual cities and 3 major economic regions (i.e., Jing-Jin-Ji, Yangzte River Delta, and Pearl River Delta) were pro-
duced (Fig. 1). As many as 15 out of the 20 selected cities can be found on the WUDAPT platform, while 5 cities 
and 3 economic regions are not yet submitted to the WUDAPT portal at this stage. The quality checking results 
and the availability of the LCZ map products used in this study are summarized in Table 1. The overall accuracy 
of these LCZ classification maps ranges from 60% to 89%, with a mean of 76% and a standard deviation of 7.2% 
(Fig. 2a). The overall accuracy has a similar fluctuation with the accuracy of natural land cover (OAn), which has 
a mean of 85% for the selected cities. Figure 2a also indicates a relatively poor and fluctuating performance of the 
classifier for built-up areas. The mean accuracy over built-up areas (OAu) is 47%, and the lowest is only 26% in the 
Jing-Jin-Ji region. When compared to the number of training samples shown in Fig. 2(b), there is no statistically 
significant correlation with these accuracy measures.

Accuracy variation among classes. When examining the accuracy matrix of all classes in all cities/regions 
(Fig. 3a), it is observed that the class of LCZ 9 (sparsely built) has a consistently low accuracy, with a mean of 
32% regardless of where the city is located and how developed the city is. It is followed by LCZ C (bush, scrub) 
and LCZ 5 (open mid-rise), with a mean of approximately 40%. Over built-up areas, serval zero accuracies were 
observed, mainly appearing in LCZ 6 (open low-rise), LCZ 8 (large low-rise), LCZ 9, and LCZ 10 (heavy indus-
try). On the other hand, three natural LCZ classes (i.e., LCZ A (dense trees), LCZ D (low plants) and LCZ G 

Figure 1. LCZ maps of 20 individual cities and 3 major economic regions.
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(water)) were satisfactorily categorized in all cities, with a mean accuracy of 94%, 85% and 95%, respectively. 
To reflect the contribution of cities to the classification accuracy and discrepancies among these classes, an area 
map is shown in Fig. 3b. It is observed that, for classes with high accuracy (e.g., LCZ A), the performance of the 
WUDAPT method in all cities is stable regardless of the variation in the number of training samples, while for the 
poorly classified LCZs (e.g., LCZ 9), the performance fluctuates notably, indicating that single-city optimization 
might be needed for the improvement of classifications with low accuracy.

Confusion matrix. By investigating the confusion matrix, the accuracy discrepancy could be explained by 
misclassification among the LCZ classes. To obtain a general picture of the class mixture over all cities, we accu-
mulate the confusion matrices by summing the corresponding elements (Fig. 4a). It is clear that a large portion of 
the LCZ classes have misclassification errors. For example, the worst-classified LCZ 9 was mistakenly recognized 
as LCZ D in 56% of cities. As the land cover of heavy industry (LCZ 9) could be compact/open/large low-rise 
(LCZ 3, LCZ 6 and LCZ 8, respectively) and possibly contain large paved surfaces (LCZ E), confusion among 
these classes is common in the selected cities. To better understand how often these classes could be confused, 
the frequency of each class based on the confusion matrix was counted and the results are shown in Fig. 4b. It 
can be seen that classes in built areas (i.e., LCZs 1–10) are notably confused, and the pattern is distinct from the 
similarity matrix used for calculating the weighted accuracy42 and from those published35. As a comparison, 
Fig. 4c shows the combined confusion matrix from LCZ maps for Moscow, Warsaw, Yangon and Karachi, which 
is also distinct from that for Chinese cities. In addition to the urban classes, LCZ D (low plants), a class of natural 
surfaces, has the widest mixture range. It was mistakenly identified as LCZs 6, 9, B (scattered trees), C and F (bare 
soil or sand), all of which have a common feature of scattered trees according to their definitions.

Accuracy variation among cities. When focusing on the quality assessment in each city, it is noticed that 
approximately half of the cities do not contain all the LCZ classes, among which, the city of Suzhou has the fewest 

WUDAPT Status Cities

In preparation Nanjing Hong Kong Xiamen Suzhou Wuxi

Accept Shenyang

Minor Wuhan Changsha Qingdao Xian Shanghai

Major Jinan Tianjin Hangzhou

Not available
Chongqing Nanning Harbin Dalian Yantai

Guangzhou

Table 1. The availability and status of LCZ maps on the WUDAPT platform (in addition to “not available” 
cities, all other cities can be checked on the WUDAPT website; cities with “minor” or “accepted” status can be 
downloaded).

Figure 2. (a) Accuracy measures of LCZ maps for selected cities. (OAu: overall accuracy results of built-up 
classes; OA: overall accuracy results of all classification; OAn: overall accuracy results of natural land cover 
classes); (b) Total number of collected training samples for each study area.
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classes (6 less). Poor classifications in the selected cities mainly occur in built-up areas, with exceptions in that 
Xian, Jian and Tianjin have the worst classifications of natural lands. In these cities, zero accuracy was observed 
in LCZ E (bare rock or paved) and LCZ C (low plants), where there were misclassifications with LCZ F in Xian, 
LCZ 10 in Jinan and LCZ B in Tianjin. To investigate the relationship of classification accuracies among cities, 
following Eq. (2), we calculated the correlation matrix where the upper triangular part represents the correlation 
coefficients of urban classes and the lower part represents the coefficients of natural classes (Fig. 5). It is clear that 
the selected cities have comparable accuracies in each class of natural areas, while the correlation of accuracies 
of built-up classes among cities is generally low regardless of the LCZ type or city size. Considering that the per-
formance of classifiers in natural lands is satisfied, it comes as no surprise that cities with less compact and open 
built-up classes (i.e., LCZs 1–6) usually have higher overall accuracies, e.g., Suzhou, Nanjing, Yantai, and Xian.

LCZ map refinement with urban DEM. The analysis of the confusion matrices indicates that the 
WUDAPT method is insufficient for identifying distinct building classes and that height information is expected 
to be vital for refinement. There are several techniques to acquire urban elevation data (e.g., LiDAR and photo-
grammetry); however, the cost is usually prohibitive, especially for large-scale mapping. To improve the accuracy 
of classifying urban built-up classes and staying in line with the philosophy of WUDAPT, that is, using freely 
available imagery, we generated the urban DEM with 25 m resolution from C-band Sentinel-1 SAR data using 
our self-developed TCPInSAR processor to detect the impact of adding then urban DEM into the LCZ scheme. 
Figure 6(a) shows the elevation map over an area in the PRD region. According to the definitions of the LCZ 
classes, we use thresholds of 10 m and 30 m to distinguish low-rise, midrise and high-rise classes. The classifica-
tion map is shown in Fig. 6(b), whose resolution has been down-sampled to 100 m. To make a cross-comparison, 
we extracted and shrank the LCZ building map into three classes by combining LCZ 1 and LCZ 4 as the high-rise 
class, LCZ 2 and LCZ 5 as the midrise, and others as the low-rise, as shown in Fig. 6(c). Figure 6(d) shows the 
corresponding map constructed from the InSAR-derived urban DEM. Significant discrepancies are observed 
between Fig. 6(c,d), which indicates the uncertainties associated with the current LCZ products. These discrep-
ancies also showed the feasibility of using InSAR-derived DEM products in the refinement of classifying LCZ 
urban classes.

Correlation among cities in class distribution. Although the current accuracy of urban classes might 
not be sufficient to support a comprehensive analysis of the spatial pattern of each single class, it is possible to 
reveal the similarity among cities and regions with respect to class distribution by correlation analysis. Following 
Eq. (2), we calculated the correlation coefficient of the proportion of LCZ urban classes among the selected cit-
ies, as shown in Fig. 7. In general, the urban structures of cities have a low similarity among all selected cities 
regardless of city size, geographic location, and social economic status (see Fig. 7(a)), which indicates that unique 

Figure 3. (a) The accuracy of each class in all selected cities/regions (X axis shows the name of the cities and 
regions; Y axis shows the 17 LCZ classifications; the coloured bar shows the LCZ classification accuracy results 
ranging from 0–1); (b) the area map of (a) indicating the mean accuracy of each class and the contribution 
of each city/region (lines represent 20 different cities and 3 economic regions; X axis shows the 17 LCZ 
classifications; Y axis shows the classification accuracy results ranging from 0–1).
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urban canopy parameters should be determined for each city when applying numerical models to simulate the 
weather, climate and air quality. However, when looking into the cities within each economic region, the cor-
relation appears to be notable. Cities located in the same economic region tend to have similar proportions of 
urban LCZ classes. In the Yangtze River Delta region, except for the city of Nantong, the other 13 cities have a 
high correlation (>0.8) in class proportion with one or more cities (Fig. 7(b)). A higher correlation (>0.9) among 
most of the cities was also observed in the Jing-Jin-Ji region, where only the cities of Chengde and Zhangjiakou 
were distinct from the other 11 cities (Fig. 7(c)). The correlation matrix over cities in the Pearl River Delta region 
is shown in Fig. 7(d), where the class distributions in cities maintain a correlation of at least 0.8 except for that 
in Hong Kong, which, as expected, as one of the most developed cities in the world, was different from the other 
cities in the region.

Discussion
The generated LCZ maps have notable variations in classification accuracies (especially for the built-up classes). 
We attribute this result to the following reasons: (1) class incompleteness. It is commonly accepted that the 
WUDAPT method has relatively poor classification performance for compact and open buildings (i.e., LCZs 
1–6). Therefore, for cities that lack such classes, a higher classification quality can be anticipated. Examples in this 
work are Yantai and Suzhou. (2) Insufficient training samples. Although the significant relationship between the 
number of training samples and accuracy was not observed in the selected cities, we noticed that Hong Kong, 
owning the highest sample density in built-up areas, has the best urban classification performance, while the 
worst is the Jing-Jin-Ji region, where the sample density is lowest. Using LCZ 9 as another example, most cities 
performed poorly in this class except for Harbin, where the training samples were rather abundant, up to 28% of 
the total amount. (3) Similarity among classes. From the generated LCZ maps, it is found that, in addition to the 
misclassification among compact and open buildings, a large portion of classes were mistakenly recognized as 
LCZ 10 and LCZ D in the selected cities. Indeed, industrial structures could contain compact or open buildings. 
(4) Seasonal mismatch. When selecting training samples from Google Earth, seasonal differences with Landsat 
images deserve considerable attention. It is particularly risky for cities with four distinct seasons. Figure 8 shows 
the land features of a training sample collected in the Jing-Jin-Ji region in different months, indicating that a 
seasonal mismatch could exist between the training samples and the Landsat and might cause misclassification.

Figure 4. (a) Accumulation of normalized confusion matrix where the original elements have been divided by 
the row total; (b) appearance number of each class in all the confusion matrices; (c) appearance number of each 
class in the confusion matrices of Moscow, Warsaw, Yangon and Karachi. The coloured bar shows the number of 
cities.

Figure 5. The correlation matrix of classification accuracies among cities/regions. The upper triangular part 
shows the correlation coefficients of urban areas, and the lower triangular part shows those of natural lands. The 
coloured bar shows the correlation coefficients ranging from −1 to 1.
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Figure 6. (a) Urban DEM retrieved from Sentinel-1 data; (b) classifications according to mean heights over 
100 m patches; (c) height-related classifications extracted from the LCZ map; (d) height-related classifications 
extracted from (b).

Figure 7. Correlation in class proportions among (a) the selected cities/regions; (b) cities in the Yangtze River 
Delta region; (c) cities in the Jing-Jin-Ji region; and (d) cities in the Pearl River Delta region. The coloured bar 
shows the correlation coefficients ranging from −1 to 1.
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During the generation of LCZ maps, to improve the efficiency, we jointly processed some cities as a cluster. 
Among the three major economic regions, the Yangtze River Delta and Pearl River Delta have comparable (or 
even higher) classification accuracies, while the performance (especially in built-up areas) over Jing-Jin-Ji is rel-
atively poor, mainly due to insufficient samples (only 420 over the whole territory). Such practice confirms that 
large-scale processing is feasible provided that cities share similar biophysical backgrounds and the features of 
training samples are consistent.

When looking into the confusion matrices, severe misclassification mainly occurred among urban classes 
in the selected cities. To distinguish them, information about the relative locations and heights of buildings is 
vital; however, optical images are insufficient to identify building heights, likely leading to the incorrect selection 
of training samples and thereby incorrect classifications. Building heights seem to be compulsory for accurate 
classification of urban landscapes, which was verified by a preliminary experiment with InSAR-derived urban 
DEM. Although the urban DEM has a moderate resolution of 25 m, it provides more reasonable height-related 
classifications, indicating that building classifications can be refined with extra height information.

The correlation analysis among cities reveals that similarity in class proportions is regionally dependent. Cities 
within the same economic region have rather high correlation coefficients, indicating they have a higher sim-
ilarity in the proportions of different built-up types, while the correlations among all cities are relatively low. 
The potential causes include similar social, economic and climate status. However, within each region, there are 
still cities with distinct urban structures, and this situation leads to low correlations. The distinction is mainly 
raised by one or more classes that have extraordinary proportions. For example, Nantong in the Yangtze River 
Delta region has 48.1% of sparsely built (i.e., LCZ 9) land covers in urban areas, which is much higher than that 
observed in other cities. Hong Kong in the Pearl River Delta region is distinct from the others by having 30.6% of 
the compact high-rise class (i.e., LCZ 1), the highest in the region. The high similarity in LCZ classes among cities 
within respective regions might indicate that the convergence of city development is serious, which can serve as a 
reference for regional planning and policy making.

conclusion
Following the standard WUDPT processing workflow, the LCZ maps were generated for 20 individual cities 
and 3 major economic regions in China based on site-specific operation. By examining the difference in classi-
fication accuracy, we conclude that the accuracy discrepancy among cities is mainly due to class incompleteness 
(especially the compact classes), the number and quality of training samples, the similarity among classes and 
the seasonal mismatches between samples and Landsat data. This result indicates that because Google Earth’s 
image does not include the height information of buildings, the standard WUDAPT method is inadequate for 
distinguishing height-related classes. Considering that the similarity among classes often makes the sample col-
lection rather challenging, even for experienced operators, novel classifiers other than supervised ones should be 
developed. For cities with distinct seasonal land features (especially those in northern China), when collecting 
training samples, seasonal consistency should be ensured, as low plants (LCZ D) in summer could become bare 
soil (LCZ F) in winter in these cities.

Figure 8. Spatial features of the same training sample in different seasons. The figures were captured from: 
Google, DigitalGlobe.
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The experiment with the urban DEM demonstrated a reasonable refinement, which shows that the height 
information retrieved from satellite SAR images (e.g., Sentinel-1) has the potential for distinguishing and detect-
ing the building heights of LCZ classes 1–10 in built-up areas and can improve the current WUDAPT method 
and level 0 product accuracy. However, although Sentienl-1 data are freely available around the world, it is chal-
lenging for non-InSAR experts to extract the urban DEM from these data. The main difficulty lies in the mitiga-
tion of building/ground deformations and turbulent atmospheric delays, which are mixed with building heights 
in InSAR measurements. Moreover, how to tightly integrate the data in the WUDAPT method (e.g., dataset 
alignment and height classification threshold selection) also needs further investigation. To facilitate the usage 
of the urban DEM in LCZ classification, the generation of annually updated national urban elevation datasets 
from interferometric Sentinel-1 measurements will be a part of our future work, which is also expected to benefit 
WUDAPT L1 (i.e., 2.5D urban forms) data production.

It is worth noting that, although the building classes are currently of moderate accuracy, i.e., approximately 
40%, the potential of LCZ maps can also be explored as they carry more detailed information on urban morphol-
ogy than do other classification datasets and they are valued at both the domestic and the international levels. At 
the national level, the development of LCZ maps for 20 individual cities and 3 major economic regions in China 
can serve as a fundamental database for various applications, such as urban climate investigation32, urban energy 
consumption estimation26, urbanization projection and air pollution distribution detection43. The correlation 
analysis results of the developed LCZ data show the morphological characteristics of both built-up areas and 
natural landscapes of Chinese cities and regions. The convergence of city development within respective eco-
nomic regions might be useful for evaluating the collaborative/competitive relationship and degree of regional 
integration. At the international level, the developed database is also a crucial part of the WUDAPT database 
because approximately half of the training samples and LCZ maps are from this study. The developed database 
and training samples not only lead to the development of global and regional LCZ maps but also make data fusion 
and data transferability possible. For example, our data were adopted in the latest global transferability of local 
climate zone models44. Based on our findings, the study also indicates the use of open data to develop an urban 
DEM for improving the LCZ classification accuracy of built-up areas.

Moreover, when studying the meteorological effects of urbanization, the LCZ maps can be reduced to 3 classes 
(i.e., urban low-rise, midrise and high-rise) as one of the inputs of the Weather Research and Forecasting (WRF) 
model to enhance the simulation32. Meanwhile, the active WUDAPT community is nurturing innovative meth-
ods to produce high-quality LCZ products, e.g., by involving other types of data sources and using advanced 
machine learning techniques. Accurate and publicly accessible LCZ maps for Chinese cities can be expected in 
the near future.

Dataset and Methodology
Cities. A total of 20 individual cities and 3 major economic regions (i.e., Jing-Jin-Ji, Yangzte River Delta, and 
Pearl River Delta) were selected for LCZ map generation (Fig. 1). Although a large portion of cities are in the 
eastern segment of the country, they are representative, as the selected cities range from the first (i.e., megacities) 
to the second (i.e., large-medium cities) to the third-tier levels (i.e., medium cities). These cities contributed more 
than 50% to China’s GDP in 2018. Considering the ecoregion similarity20, the cities in China’s three major regions 
are jointly processed.

Data. The 30 m Landsat 8 level 1 images from 2014 to 2015 were downloaded from the U.S. Geological Survey 
(http://glovis.usgs.gov). They were used for LCZ map generation for the cities in China. Seamless mosaic and 
atmospheric correction were conducted if necessary, and all images were down-sampled to 100 m to reflect the 
local urban structures instead of single objects. For urban DEM generation, a set of Sentinel-1 radar data acquired 
in 2015 with a spatial resolution of 25 m were collected from the European Space Agency (https://scihub.coper-
nicus.eu/dhus/#/home).

Training samples. Training data are vital for LCZ classification in the standard WUDAPT workflow. In view 
of efficiency, it is ideal to classify a large number of cities by using the training data collected in one or a few cities. 
However, such a strategy usually fails to produce satisfied classification data due to transferability, a common issue 
faced by machine learning methods, which has also been recently reported20. Therefore, in our work, although 
it is time consuming, we generated the training polygons for each LCZ class in every city/region following the 
guidance on the WUDAPT website. To distinguish the classes that appear similar in Google Earth images (e.g., 
compact low-rise (LCZ3), open low-rise (LCZ6) and lightweight low-rise (LCZ7)), Google Street View images 
were also employed. Considering that the Landsat images were acquired during a two-year period, when selecting 
training samples, we avoided digitizing polygons in places that were likely to change, such as construction sites, 
vacant development areas and bare land19. We selected a total of 9923 samples from these cities. The number of 
samples for each city/region is shown in Fig. 2b. It is worth noting that some types of LCZ classes were not avail-
able in these cities. To reduce the effect of sample imbalances, we selected a similar number of samples from each 
class, provided that it was abundant in the cities.

WUDAPT processing workflow. There are 3 steps involved in the standard WUDAPT processing work-
flow for the generation of LCZ maps13–15: (1) acquisition and pre-processing of freely available satellite images 
(e.g., Landsat-8); (2) selection of training samples by experienced operators for each city; (3) conduction of super-
vised classification (e.g., random forest) embedded as an ‘LCZ classification tool’ in SAGA GIS. The workflow can 
be efficiently applied in each city while considering that a large portion of selected cities are located in the top 3 
megacity clusters of China and that they share similar biophysical backgrounds; based on this information, we 
combined the samples in each cluster and generated the entire LCZ map for the region45.

https://doi.org/10.1038/s41598-019-55444-9
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Quality assessment and correlation coefficients. To evaluate the accuracy of the LCZ maps, a ran-
dom sampling scheme (i.e., bootstrapping) is used in the WUDAPT workflow14, where the training samples are 
divided into two portions for training and evaluation. Considering that the collection of a sufficient number of 
samples requires a long period and that only a limited number of samples can be selected for the classes that are 
rare in a given city, we conduct the quality assessment manually after the generation of LCZ maps using all sam-
ples. A new set of samples was randomly collected for each LCZ class as ground truths. The number of ground 
truths was set to 0.5% of each generated class. By cross-comparison between the ground truths and produced LCZ 
maps, the confusion matrices can then be determined, and these matrices reflect the misclassification of land cov-
ers of each city. To reflect the overall misclassification of all the selected cities/regions, an accumulated confusion 
matrix was also determined, where the number of evaluation samples was replaced by the percentage to address 
the ground truth imbalance among cities. Based on the single-city confusion matrix, a set of quality metrics can 
be calculated. We employed the following accuracies to evaluate the quality of the LCZ maps14,20: (1) overall accu-
racy (OA), which denotes the percentage of correctly classified pixels, regardless of the performance of each class; 
(2) OAb reflects the overall accuracy of the LCZ classes related only to built-up areas; and (3) OAn represents the 
overall accuracy of the LCZ classes of natural land covers. They can be calculated as follows:
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where Ni
c, Ni

cb and Ni
cn are the correctly classified areas of all classes, built-up classes and natural classes, respec-

tively, and Na Nbuilt
a  and Nnatrual

a  are the corresponding total ground truths. In addition to the aforementioned 
accuracy measures, there are two other commonly used metrics, i.e., OAbu, which denotes the overall accuracy of 
the built versus natural LCZ classes, and the weighted accuracy (OAw), which is obtained by applying weights to 
the confusion matrix to account for the similarity and dissimilarity among classes. Considering that these two 
measures are usually high and could not reflect the discrepancies among cities, we discarded them in this work. 
To reflect the reliability of the generated LCZ maps (i.e., how likely that the class on the map will actually be pres-
ent on the ground), we also calculated the user’s accuracy by taking the total number of correct classifications for 
a particular class and dividing it by the row total. Because a large number of LCZ maps were generated, we 
attempted to investigate the relationship among the cities by calculating the correlation coefficients that are 
defined as follows46.
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where n is the number of LCZ classes (i.e., 17); xj and yj are the class accuracies or distributions in two cities, 
respectively.

Urban DEM generation. The synthetic aperture radar interferometry (InSAR) technique has long been 
used for DEM generation. Global SRTM DEM47 and TanDEM-X DEM48 are typical examples. To retrieve the 
urban DEM from Sentinel-1 data acquired with a repeating cycle of 12 days, it is compulsory to mitigate the 
contribution of ground/building deformation and atmospheric artefacts in InSAR measurements. To this end, 
we adopted our self-developed multi-temporal InSAR technique termed TCPInSAR49 to process the data. The 
estimator has several advanced features, e.g., robust image coregistration50, adaptive coherent point selection44, 
quad-tree model for atmospheric delay mitigation51 and parameter estimation with no need for phase unwrap-
ping52, which guarantees the quality of the retrieved DEM.

Data availability
The Landsat data are publicly available here: http://glovis.usgs.gov.The Sentinel-1 data are also publicly available 
from https://scihub.copernicus.eu/dhus/#/home. For the WUDAPT product, only those after the quality checking 
are publicly available from: http://www.wudapt.org/.
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